Micro-CT as a tool for nanoporosity investigation of bone engineered scaffolds

نویسندگان

  • K. Szlazak
  • J. Jaroszewicz
  • B. Ostrowska
  • Christian Hellmich
چکیده

Aims Nowadays medicine needs material to heal, unite and complete defects of the affected tissue. It often involves with creating three dimensional constructs. Biodegradable materials, which are currently available for bone tissue regeneration, still have limitations regarding their degradation rate. In this case there is a growing need for novel quantitative techniques for the characterization of nanoporoisty, which can appear after degradation process. One of this method is microcomputed tomography (micro-CT). It has a wide variety of applications in bioengineering varying from imaging, through 2D and 3D quantitative analysis to in situ tests. In comparison to conventional methods used for evaluation of degradation of tissue engineering products which are based on 2D visualization, the micro-CT not only allows the observation in all of orientations in non-destructive way, but also give an access to nanoporosity. The aim of this study was to show an application of micro-CT in quantitative analysis of nanoporosity in scaffolds during degradation process in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Methods to analyze bone regenerative response to different rhBMP-2 doses in rabbit craniofacial defects.

Multiple assessment methods are available to evaluate the performance of engineered scaffolds in accepted bone healing animal models. Evaluation and comparison of these methods can aid in the planning of future animal studies, as well as, inform clinical assessments as the engineered scaffolds translate into clinical studies and applications. To evaluate multiple bone assessment techniques, bon...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging.

This paper illustrates the utility of micro-computed tomography (micro-CT) to study the process of tissue engineered bone growth. A micro-CT facility for imaging and visualising biomaterials in three dimensions (3D) is described. The facility is capable of acquiring 3D images made up of 2000(3) voxels on specimens up to 60mm in extent with resolutions down to 2 microm. This allows the 3D struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015